
Pipage Rounding1

• In a previous lecture, we described a rounding algorithm to convert a fractional solution to the bipartite
matching into an integral solution with the same or larger value. In this lecture, we build on that idea
and show its applicability to obtaining approximation algorithms for NP-hard problems. This style
of rounding has been called pipage rounding in the literature. We illustrate this on a problem which
we have seen before: MAX COVERAGE. Recall that in this problem we are given a universe U and a
collection of subsets of U : S = {S1, . . . , Sm}. The objective is to choose a collection of k sets so as
to maximize the cardinality of their union. We know that a greedy algorithm obtains an 1−

(
1− 1

k

)k-
approximation which tends to 1− 1

e as k →∞.

Suppose every element was present in at most f sets. That is, the degree of the set system S is ≤ f .

In this note we describe an 1 −
(
1− 1

f

)f
-approximation for the MAX-COVERAGE problem. In

particular, this implies a 3
4 = 0.75-approximation for the MAX VERTEX COVERAGE problem, where

we are given an undirected graphG = (V,E) and objective is to choose a subset U ⊆ V with |U | = k
which maximizes the number of edges having at least one endpoint in U . This is because, f = 2 for
this set family; every edge contains 2 vertices. It is not hard to show an example where the greedy
algorithm for MAX-COVERAGE when tailored to MAX VERTEX COVERAGE only be as good as a
≈ 1− 1

e ≈ 0.632 approximation.

• LP Relaxation. We begin with a LP relaxation for the problem.

opt ≤ lp(U,S) := maximize
∑
i∈U

zi (MaxCov-LP)

zi ≤
∑
j:i∈Sj

xj , ∀i ∈ U (1)

m∑
j=1

xj = k, (2)

0 ≤ zi, xj ≤ 1, ∀i ∈ U, 1 ≤ j ≤ m (3)

Above, xj indicates whether set j is picked, zi indicates to what extent element i is covered. (1)
captures the notion that an element is covered only if a set containing it is picked, and (3) captures the
notion that any element can’t be covered more than once.

Before moving ahead, for reasons which will soon become clear, we rewrite the above program by
eliminating the z-variables. Given xj’s, the value zi will be set to min(1,

∑
j:i∈Sj

xj).Therefore,
(MaxCov-LP) is equivalent to

opt ≤ max {L(x) : x ∈ P} (4)
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where

L(x) =
∑
i∈U

min

1,
∑
j:i∈Sj

xj

 and P := {x ∈ [0, 1]m :
∑
j

xj = k}

Although the functionL : Rm → R is not linear, (4) can be solved via the linear program (MaxCov-LP)
since it is equivalent to it. However, the solution to (4) can have fractional entries, that is, needn’t be
in {0, 1}m

• Another non-linear function. We now describe another non-linear function F : Rm → R which is
the key definition. The nice properties of F would be (a) the maximum value of F (x) over x ∈ P
would also be an upper bound on opt, and (b) the maximum value of F would be obtained on integral
points. The not-nice property of F would be that maximizing F over P is NP-hard (yes, I understand
that it seems no progress is being made; hold on).

Here’s the function.

F (x) :=
∑
i∈U

1−
∏
j:i∈Sj

(1− xj)

 (Continous Coverage)

Observe that whenever x ∈ {0, 1}m, F (x) equals the value of the algorithm which picks sets with
xj = 1. Thus, as promised, the following math program is also an upper bound on opt.

opt ≤ max {F (x) : x ∈ P} (5)

As mentioned above, the beauty of the function F (·) defined in (Continous Coverage) is the following
: given any solution x ∈ P , there is a rounding algorithm called PIPAGE ROUNDING, which returns a
solution xint ∈ {0, 1}m ∩ P with the property that F (xint) ≥ F (x). In other words, the program (5)
has no integrality gap! We describe this pipage rounding in greater detail soon, but before doing so
we need to address what use is this rounding algorithm if (5) cannot be solved in polynomial time
(which we believe one can’t unless P=NP).

• Comparing F and L. The main point is that although F can’t be maximized over P , L can, and the
following analytic claim shows that F and L are point-wise related. For brevity’s sake, let ρ(x) :=
1−

(
1− 1

x

)x. It is not too hard to see d ≤ f implies ρ(d) ≥ ρ(f).

Lemma 1. For all x ∈ P , F (x) ≥ ρ(f) · L(x), where f is the degree of the set system S.

Proof. Fix i ∈ U and suppose it is contained in d ≤ f sets. By the AM-GM inequality,

∏
j:i∈Sj

(1− xj) ≤

(∑
j:i∈Sj

(1− xj)

d

)d
=

(
1−

∑
j:i∈Sj

xj

d

)d
(6)

Let g(t) := 1− (1− t
d)
d. Then, for d ≥ 1 and t ∈ [0, 1] we have g(t) ≥ ρ(d) · t. This follows because

in that interval, g is concave, and thus g(t) ≥ (1 − t)g(0) + tg(1) = ρ(d) · t. Now, we can use this
in (6) to say

1−
∏
j:i∈Sj

(1− xj) ≥ min

1,
∑
j:i∈Sj

xj

 · ρ(d) ≥ ρ(f)
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where we used the monotonicity of ρ in the last inequality. Summing for all i ∈ U proves the
lemma.

• Approximation Algorithm. To summarize, we know how to maximize L, that is solve (4), but the
solution may not be integral. We don’t know how to maximize F , that is solve (5), but we know there
is an integral optimum. The previous lemma tells us F (x) ≥ ρf ·L(x) for all x ∈ P . Putting all three
of these together implies the following ρf-approximation for MAX COVERAGE.

1: procedure MAX COVERAGE ROUNDING(S):
2: Solve (MaxCov-LP) to get (x, z).
3: Run PIPAGE ROUNDING(x) to obtain xint with F (xint) ≥ F (x).. We describe this next.
4: Pick sets with xint

j = 1 covering F (xint) elements.
5: . Since xint ∈ P ∩ {0, 1}m, there will be exactly k sets picked.

Theorem 1. MAX COVERAGE ROUNDING is a ρf approximation.

To see why, note that opt ≤ L(x) ≤ 1
ρf
F (x) ≤ F (xint)

ρf
.

• Pipage Rounding. The setting where pipage rounding applies is more general than the one described
above. Abstractly, suppose we want to maximize a function F on m variables in {0, 1}m intersected
with a polytope P

max{F (x) : x ∈ P ∩ {0, 1}m } (7)

Suppose the following two conditions hold.

Pa. For any non-integral x ∈ P , one can efficiently find a vector vx ∈ Rm and scalars αx, βx > 0
such that x+ αxvx and x− βxvx have strictly more integral coordinates that x.

Pb. For all x ∈ P , the function F (·) is convex in the direction of the above vector vx. More
precisely, the function gx(t) := F (x+ tvx) is a convex function over the variable t ∈ R.

Theorem 2. If conditions (Pa) and (Pb) are satisfied, then given any x ∈ P there exists an
efficient algorithm PIPAGE which returns xint ∈ P ∩ {0, 1}m with F (xint) ≥ F (x).

Remark: In fact, one doesn’t require the first condition (Pa) very strongly. It suffices if one
can show x+ αxvx and x− βxvx “make progress” towards an integral solution. One possible
measure of progress is that both these points lie on a face of P of smaller dimension.

Proof. The proof is the following obvious while loop
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1: procedure PIPAGE ROUNDING(x):
2: while x /∈ {0, 1}m do:
3: Use (Pa) to obtain αx, βx,vx.
4: if F (x+ αxvx) ≥ F (x) then:
5: x← x+ αxvx
6: else:
7: x← x− βxvx
8: . Note that the number of integral coordinates in x increases in either case.

We now show that in every while loop the value of F (x) can only increase. Using the fact that F (·)
is convex in direction of vx, we assert that max (F (x+ αxvx), F (x− βxvx)) ≥ F (x) which would
give us what we need. To see the inequality, write 0 = βx

αx+βx
·αx+ αx

αx+βx
· (−βx) and use convexity

of gx to say

gx(0)︸ ︷︷ ︸
=F (x)

≤ βx
αx + βx

gx(αx)︸ ︷︷ ︸
=F (x+αxvx)

+
αx

αx + βx
gx(−βx)︸ ︷︷ ︸

=F (x+αxvx)

And so, gx(0) ≤ max(g(αx), g(−βx)) proving what we asserted. Since the number of integral
coordinates increases, the above procedure terminates in at most m steps. Thus the time taken is at
most m times the time taken to implement (Pa).

• (Pa) and (Pb) for coverage. Recall, for the coverage problem P := {x ∈ [0, 1]m :
∑m

j=1 xj = k}.

Claim 1. (Pa) and (Pb) are true for the above polytope.

Proof. Suppose x is a non-integral vector inP . Since
∑m

j=1 xj is an integer, there must be at least two
coordinates, call them xp and xq, such that both are in (0, 1). Our vector vx is then the vector (ep−eq),
where ei is the unit-vector with 1 in the tth coordinate and 0 elsewhere. Set αx = min(1 − xp,xq)
and βx = min(1− xq,xp). Note that x+ αxvx and x− βxvx are vectors in P with at least one less
fractional coordinate. The whole process above was efficient.

Now we establish the convexity of F (x) in the direction (ep−eq). Indeed, gx(t) := F (x+t(ep−eq))
can be written as using (Continous Coverage)

g(t) =
∑
i∈U

hi(t)

where hi(t) is independent of t if the element i is neither in the set Sp nor in the set Sq, is a linear
function if i is in exactly one of Sp or Sq, or a quadratic in t with a positive coefficient for t2 if i ∈ Sp
and i ∈ Sq. Indeed, if we define Cx :=

∏
j:i∈Sj ,j 6=p,j 6=q(1 − xj) which is a non-negative constant

independent of t, then in the first case hi(t) = 1−Cx, in the second case hi(t) = 1− (1−xp− t)Cx
or hi(t) = 1− (1− xq + t)Cx which are both linear functions of t, or (most interestingly perhaps)

hi(t) = 1− (1− xp − t)(1− xq + t)Cx = t2Cx + linear function of t

if i ∈ Sp ∩ Sq. In sum, in all cases hi(t) is a convex function, and thus g(t) is a convex function.
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Exercise:KK Show that the MAX COLORFUL COVERAGE problem has a (1−1
e )-approximation.

Indeed, a (1− (1− 1
f )
f ) approximation.

Notes

The algorithm in this note, and indeed the nomenclature of pipage rounding, is from the paper [1] by Ageev
and Sviridenko. See the paper for other applications such as graph and hypergraph partitioning problems,
and a job scheduling problem as well. Pipage rounding was used in the influential paper [2] by Calinescu,
Chekuri, Pál, and Vondrák to give an (1− 1

e )-approximation for maximizing any monotone submodular func-
tion over a matroid constraint. Randomized versions of pipage rounding have been studied in the paper [4]
by Gandhi, Khuller, Parthasarathy, and Srinivasan, for many kinds of problems with “hard constraints”, and
more recently explored for submodular objectives in the paper [3] by Chekuri, Vondrák, and Zenklusen.
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